University of California, Berkeley Physics 105 Fall 2000 Section 2 (Strovink)

ASSIGNMENT 8

Reading:

105 Notes 9.1-9.8 Hand & Finch 7.1-7.10, 8.1-8.3

1.

Discuss the implications of Liouville's theorem on the focusing of beams of charged particles by considering the following simple case. An electron beam of circular cross section (radius R_0) is directed along the z axis. The density of electrons along the beam is constant, and the electrons all have the same z momenta, but their much smaller momentum components transverse to the beam $(p_x \text{ or } p_y)$ are distributed uniformly over a circle of radius p_0 in momentum space. If some focusing system is used to reduce the beam radius from R_0 to R_1 , find the resulting distribution of the transverse momentum components. What is the physical meaning of this result? (Consider the angular divergence of the beam.)

2.

In New Orleans (30° N latitude), there is a hockey arena with frictionless ice. The ice was formed by flooding a rink with water and allowing it to freeze slowly. This implies that a plumb bob would always hang in a direction perpendicular to the small patch of ice directly beneath it.

Show that a hockey puck (shot slowly enough that it stays in the rink!) will travel in a *circle*, making one revolution every day.

3.

Consider a situation exactly the same as in the previous problem, except that the rink is centered at the *north pole*. This stimulates a controversy:

Simplicio: "The angular frequency of circular motion of the puck is $2\Omega_e \cos \lambda$ with $\cos \lambda = 1$ rather than $\frac{1}{2}$ as in the previous problem [where Ω_e is the angular velocity of the earth's rotation about its axis]. So $\omega_{\text{puck}} = 2\Omega_e$."

Salviati: "Work the problem in the [inertial] reference frame of the fixed stars. For a particular set of initial conditions, the puck can be motionless in this frame while the earth and rink rotate under it. Then $\omega_{\text{puck}} = \Omega_e$."

Who is right? Why?

4.

Consider a particle that is projected vertically upward from a point on the earth's surface at north latitude ψ_0 (measured from the equator). (Here "upward" means opposite to the direction that a plumb bob hangs.) Show that it strikes the ground at a point $\frac{4}{3}\omega\sqrt{(8h^3/g)}\cos\psi_0$ to the west, where ω is the earth's angular velocity and h is the height reached. [Hints: Neglect air resistance and consider only heights small enough that g remains constant. Simplify your algebra by using the fact that the Coriolis force is very small with respect to the gravitational force – more quantitatively $\omega T \ll 1$, where T is the flight's duration.]

5.

Consider the description of the motion of a particle in a coordinate system that is rotating with uniform angular velocity ω with respect to an inertial reference frame. Use cylindrical coordinates, taking \hat{z} to lie along the axis of rotation, and assume that the ordinary potential energy U is velocity-independent. Obtain the Lagrangian for the particle in the rotating system. Calculate the Hamiltonian and identify this quantity with the total energy E. Show that $E = \frac{1}{2}mv^2 + U + U'$, where U is the ordinary potential energy and U' is a pseudopotential. How does U' depend on the cylindrical coordinate r?

6.

Consider an Euler rotation

$$\begin{split} \tilde{x} &= \Lambda_3 \tilde{x}^{\prime\prime\prime} \\ &= \Lambda_3 \Lambda_2 \tilde{x}^{\prime\prime} \\ &= \Lambda_3 \Lambda_2 \Lambda_1 \tilde{x}^{\prime} \; , \end{split}$$

where \tilde{x} is a vector in the body axes and \tilde{x}' is a vector in the space axes. Here

$$\Lambda_1 \equiv \begin{pmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Lambda_2 \equiv \begin{pmatrix} 0 & 0 & 1 \\ \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \end{pmatrix}$$

$$\Lambda_3 \equiv \begin{pmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

In the body axes, define

$$\vec{\omega} = \vec{\omega}_{\phi} + \vec{\omega}_{\theta} + \vec{\omega}_{\psi} ,$$

where

$$\vec{\omega}_{\phi} \equiv \hat{x}_{3}'\dot{\phi}$$

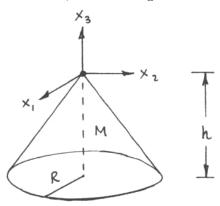
$$\vec{\omega}_{\theta} \equiv \hat{x}_{1}''\dot{\theta}$$

$$\vec{\omega}_{\psi} \equiv \hat{x}_{3}'''\dot{\psi} .$$

Find the components of $\vec{\omega}$ along the x_1' , x_2' , and x_3' (fixed) axes.

7.

Calculate the inertia tensor of a uniform right circular cone of mass M, radius R, and height h. Take the x_3 direction to be along the cone's axis. For this calculation, take the origin to be...



 (\mathbf{a})

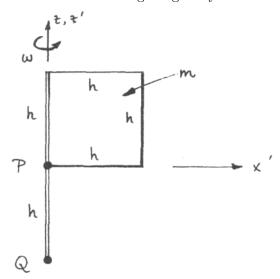
... at the apex of the cone (as shown in the figure).

 (\mathbf{b})

... at the cone's center of mass.

8.

A square door of side h and mass m rotates with angular velocity ω about the z' (space) axis. The door is supported by a stiff light rod of length 2h which passes through bearings at points P and Q. P is at the origin of the primed (fixed) and unprimed (body) coordinates, which are coincident at t=0. Neglect gravity.



 (\mathbf{a})

Calculate the angular momentum ${\bf L}$ about P in the body system.

(b)

Transform to get $\mathbf{L}'(t)$ in the fixed system.

 (\mathbf{c})

Find the torque $\mathbf{N}'(t)$ exerted about the point P by the bearings.

 (\mathbf{d})

Assuming that the bearing at P exerts no torque about P, find the force $\mathbf{F}'_Q(t)$ exerted by the bearing at Q.